首页 > 其他学习 > python > python中的生成器和迭代器
2017
09-16

python中的生成器和迭代器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含太多个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>>g = (x * x for x in range(10))

>>>g

<generator object <genexpr> at 0x1022ef630>

我们可以直接打印出list的每一个元素,但是generator是在一边循环一边计算的,但我们怎么打印出generator的每一个元素呢?如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)

0

>>> next(g)

1

>>> next(g)

4

...

>>> next(g)

81

>>> next(g)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太不方便了,正确的方法是使用for循环,因为generator也是可迭代对象,for n in g:print(n)

如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):

n, a, b = 0, 0, 1

while n < max:

print(b)

a, b = b, a + b

n = n + 1

return 'done'

fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了。

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)

>>> f

<generator object fib at 0x104feaaa0>

generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()或者循环的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行

用for循环调用generator时,发现拿不到generator的return语句的返回值(return 'done')。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

g = fib(6)

while True:

... try:

... x = next(g)

... print('g:', x)

... except StopIteration as e:

... print('Generator return value:', e.value)

... break

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

请注意区分普通函数和generator函数,普通函数调用直接返回结果,generator函数实际返回一个generator对象。

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable

>>> isinstance([], Iterable)

True

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator

>>> isinstance((x for x in range(10)), Iterator)

True

>>> isinstance([], Iterator)

False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)

True

Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:

pass

实际上完全等价于:

# 首先获得Iterator对象:

it = iter([1, 2, 3, 4, 5])

while True:

try:

# 获得下一个值:

x = next(it)

except StopIteration:

# 遇到StopIteration就退出循环

break

最后编辑:
作者:qingheluo
这个作者貌似有点懒,什么都没有留下。